在弹性力学的问题里,通常是已知物体的形状和大小(即已知物体的边界)、物体的弹性常数、物体所受的体力、物体边界上所受的约束情况或面力,而应力分量、形变分量和位移分量则是需要求解的未知量。
如何由这些已知量求出未知量,弹性力学的研究方法是:在弹性体区域内部,考虑静力学、几何学和物理学三方面条件,分别建立三套方程。即根据微分体的平衡条件,建立平衡微分方程;根据微分线段上形变与位移之间的几何关系,建立几何方程;根据应力与形变之间的物理关系,建立物理方程。此外,在弹性体的边界上,还要建立边界条件。即在给定面力的边界上,根据边界上的微分体的平衡条件,建立应力边界条件;在给定约束的边界上,根据边界上的约束与位移的关系,建立位移边界条件。求解弹性力学问题,即在边界条件下从平衡微分方程、几何方程、物理方程求解应力分量、形变分量和位移分量。
对任何学科进行研究时,总不可能将所有的影响因素都考虑在内,否则该问题将会变成非常复杂而无法求解。因此,在任何学科中总是首先对各种影响因素进行分析,既必须考虑那些主要的影响因素,又必须略去那些影响很小的因素。然后抽象地概括出这些主要因素,建立一个所谓的“物理模型”,并对该模型进行研究。当然,研究的结果将可以用于任何符合该物理模型的实际物体。在弹性力学问题中,通过对主要影响因素的分析,归结为以下的几个弹性力学基本假定。首先,是对物体的材料性质作如下的四个基本假定:
来源:网络